C3-C4-N1	108.4 (2)	109.3 (2)
C4-N1-O2	105.6 (2)	105.7 (1)
N1-02-N2	111.2 (1)	110.4 (1)
O2-N2-C3	104.6 (2)	105.4 (2)
N2-C3-C4	123.5 (2)	109.2 (2)
C2-C3-N2	126.2 (2)	127.0(2)
N1-C4-C5	126.7 (2)	127.6(2)
C4-C5-C6	112.1(1)	115.0(1)
C1-C10-C9	112.0 (1)	109.8 (1)
C19C10C1	106.6 (2)	109.7(1)
C19C10C5	109.6 (1)	110.9 (1)
C19-C10-C9	112.5 (1)	111.6(1)
C7C8C14	110.8 (1)	111 1 (1)
	113.1 (1)	114.0(1)
	116.8 (1)	116.1 (1)
C12 - C13 - C17	100.8 (1)	110.1(1)
C18 C13 C14	112.8 (2)	110.5(1)
	112.0 (2)	112.7 (1)
	108.5 (1)	108.5(1)
	118.9(1)	119.2 (1)
	110.8 (1)	111.5 (1)
C16 - C17 - C20	109.9(1)	111.2 (2)
CI/-C20-C21	1//./(2)	1/5.2(2)
	111.2 (1)	114.5 (1)
01-01/-016	112.8(1)	108.5 (1)
01	109.5 (1)	108.7 (1)
C1 C2 C3 C4	11.6 (1)	12.2 (2)
$C_1 = C_2 = C_3 = C_4$	-11.0(1)	12.2 (2)
$C_2 - C_3 - C_4 - C_3$	2.0 (2)	-3.0(2)
	-22.8(1)	27.2 (2) 52 0 (1)
	50.8(1)	- 55.9 (1)
	-00.1(1)	00.1 (2)
	44.0(1)	-43.0(2)
	52.9(1)	54.0 (2)
$C_{0} - C_{1} - C_{8} - C_{9}$	-53.6(1)	-51.6 (2)
C/_C8_C9_C10	56.0(1)	51.6 (2)
C8-C9-C10-CS	-55.3 (1)	-53.5(1)
C9_C10_C5_C6	54.6 (1)	58.5 (1)
C10-C5-C6-C7	-54.2(1)	- 59.5 (1)
C8-C9-C11-C12	53.7(1)	57.2 (1)
C9-C11-C12-C13	-54.5(1)	-55.3(1)
C11-C12-C13-C14	56.3 (1)	53.8 (1)
C12-C13-C14-C8	-60.7(1)	-58.7(1)
C13C14C8C9	58.6 (1)	59.9 (2)
C14-C8-C9-C11	-53.8(1)	-57.2(1)
C13-C14-C15-C16	-29.4 (1)	-34.1 (2)
C14-C15-C16-C17	1.3 (1)	6.7 (2)
C15-C16-C17-C13	26.6 (1)	22.2 (2)
C16-C17-C13-C14	-43.6(1)	-42.3 (1)
C17-C13-C14-C15	45.6(1)	47.9 (1)

Table 3. Asymmetry parameters (°) for the 5 β and 5 α epimers

	5β	5α		5β	5α
Ring A					
$\Delta C_{s}(1)$	28.8	30.2	$\Delta C_2(1,2)$	52.2	51.0
$\Delta C_s(2)$	44.8	42.0	$\Delta C_2(2,3)$	43.0	38.1
$\Delta C_{s}(3)$	16.3	12.1	$\Delta C_2(3,4)$	9.2	13.1
Ring B					
$\Delta C_{\bullet}(9)$	1.0	5.0	$\Delta C_2(6,7)$	1.1	7.4
$\Delta C_{c}(10)$	1.2	5.7	$\Delta C_{2}(5,10)$	2.4	4.8
$\Delta C_{s}(8)$	2.0	0.9	$\Delta C_2(5,6)$	1.7	3.0
Ring C					
$\Delta C_{\star}(12)$	5.0	2.0	$\Delta C_{2}(11,12)$	5.2	2.6
$\Delta C_{s}(11)$	1.9	2.3	$\Delta C_{2}(11,9)$	1.7	4.4
$\Delta C_{s}(9)$	3.5	3.8	$\Delta C_2(9,8)$	5.7	3.0
Ring D					
ΔC_{13}	2.5	9.4	$\Delta C_2(16)$	20.5	12.3
$\Delta C_{\star}(14)$	32.0	26.9			

SHELX76 (Sheldrick, 1976) was used for structure refinement. Torsion angles were calculated using the XANADU program (Roberts & Sheldrick, 1975) and molecular diagrams were produced using SNPI (Karaulov, 1993).

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved Dr D. Maes acknowledges support by the National Fund for Scientific Research (NFWO), Belgium. The authors also acknowledge receipt of NATO grant N-900270.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: HR1007). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Calleri, M., Chiari, G., Chiesi Villa, A., Gaetani, M. A., Guastini, C. & Viterbo, D. (1975). *Acta Cryst.* B31, 2384–2389.
- Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structure. New York: Plenum.
- El Shora, A., Palmer, R. A., Singh, H. & Paul, D. (1984). J. Crystallogr. Spectrosc. Res. 14, 315-332.
- Gavezotti, A. (1982). Nouv. J. Chim. 6, 443-444.
- Gavezotti, A. (1983). J. Am. Chem. Soc. 105, 5220-5225.
- Karaulov, S. (1993). SNPI. Molecular Plotting Program. Univ. of Wales, Cardiff, Wales.
- Maes, D., Wyns, L., Lisgarten, J., Lisgarten. D. R. & Palmer, R. A. (1992). Acta Cryst. C48, 1092–1095.
- Roberts, P. & Sheldrick, G. M. (1975). XANADU. Program for Crystallographic Calculations. Univ. of Cambridge, England.
- Sagebarth, E. & Cox, A. P. (1965). J. Chem. Phys. 43, 166-173.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Singh, H., Yadav, M. & Jindal, D. P. (1987). Indian J. Chem. B26, 95-99.
- Viterbo, D. & Serafino, A. (1978). Acta Cryst. B34, 3444-3446.
- Yadav, M. R., Jindal, D. P. & Singh, H. (1988). Indian J. Chem. B27, 205-208.

Acta Cryst. (1995). C51, 670-673

Ein anorganischer Spirocyclus aus Cyclotriphosphazen und Phosphor(V)-Hydrazin-Heterocyclus mit Twist-Konformation

Ursula Diefenbach, Brigitte Stromburg und Udo Engelhardt

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstraße 34–36, D-14195 Berlin, Deutschland

(Eingegangen am 30. September 1993; angenommen am 2. Februar 1994)

Abstract

4,4,6,6-Tetrachloro-1',2',4',5'-tetramethyl-6'-phenoxy-6'-thioxocyclotriphosphazene-2-spiro-3'-cyclodi[λ^5 phosphadiazane], C₁₀H₁₇Cl₄N₇OP₄S, was synthesized in our laboratory from hexachlorocyclotriphosphazene and bis(NN-dimethylhydrazido)thiophosphoric acid phenyl ester in THF in the presence of triethylamine. The cyclotriphosphazene part of the molecule consists of the expected nearly planar ring, whereas the saturated sixmembered phosphorus hydrazine ring adopts a strongly twisted conformation with P-N-N-P torsion angles of -68.5 (5) and -74.7 (5)° and C-N-N-C torsion angles of -91.6 (7) and -85.6 (7)°. The N-N mean bond distance of 1.420 (8) Å is in good agreement with other P^V-hydrazine ring compounds.

Kommentar

Anorganische Phosphor-Hydrazin-Sechsringe werden seit einiger Zeit von uns synthetisiert und strukturell untersucht. Sie liegen vielfach in einer stabilen Twistkonformation vor. Dies hängt in großem Maße von der Raumbeanspruchung der Ringsubstituenten ab (Engelhardt, Bünger & Viertel, 1984; Engelhardt & Simon, 1992, 1993). Spirocyclische Systeme können bei Verwendung von chlorsubstituierten Cyclophosphazenen als bifunktionellen Ringbausteinen bei der Phosphorsäure-Hydrazin-Derivaten Umsetzung mit erhalten werden (Engelhardt, Diefenbach & Damerius, 1990). Ihre weitere Substitution am Cyclotriphosphazenteil z.B. mit Aziridin führt zu möglicherweise pharmakologisch interessanten Verbindungen (Diefenbach & Engelhardt, 1992). Die Strukturuntersuchung der Titelverbindung (1) wurde vor allem in Angriff genommen, um Informationen über die Konformation des Phosphor-Hydrazin-Rings zu erhalten. Diese Daten sind im Vergleich mit verwandten Phosphor(V)-Hydrazin-Sechsringen interessant.

Die asymmetrische Einheit wird durch ein Molekül der Titelverbindung gebildet (Fig. 1). Der Phosphor-Hydrazin-Ring besitzt, wie die Torsionswinkel um die Bindungen im Ring zeigen (Tabelle 2), eine fast unverzerrte klassiche Twistkonformation. Schwefel und Phenoxy-Gruppe an P(1) sowie N(5) and N(7) an P(2) nehmen die isoklinalen Positionen ein. Die Stickstoffatome N(1) bis N(4) sind nahezu ideal sp^2 -konfiguriert (Winkelsummen nahe 360°, man vergleiche Tabelle 2). Dementsprechend nehmen die Methylgruppen Positionen zwischen pseudoaxial und pseudoäguatorial ein. Besonders auffällig ist die starke Verdrillung um die N-N-Bindungen im Ring. Insbesondere die Torsionswinkel um die exocyclischen C-N-N-C-Bindungen (Tabelle 2) haben verglichen mit analogen Phosphor-Hydrazin-Sechsringen recht hohe Werte. Die C…C-Kontaktabstände zwischen Methyl-C-Atomen an benachbarten N-Atomen sind dementsprechend mit im Mittel 3,26 (1) Å sogar größer als die Summe der vander-Waals-Radien für Kohlenstoff von 2×1.53 Å (Bondi, 1964). Sterische Wechselwirkungen zwischen den Methylgruppen begünstigen die Twist-Konformation mit ihren gegenüber der Sessel-Konformation größeren C-N-N-C-Torsionswinkeln. Auch der Abstand der im Ring gegenüberstehenden Atome P(1) und P(2) is mit 3,297 (3) Å zwar noch kleiner als die Summe der van-der-Waals-Radien nach Bondi von 3,60 Å, liegt aber etwas höher als in anderen P^v-Hydrazin-Heterocyclen mit Twist-Konformation (Engelhardt & Viertel, 1982). Besonders kurze intermolekulare Abstände finden sich in der Struktur nicht.

Fig. 1. Molekülgestalt und Numerierungsschema für die asymmetrische Einheit, mit Ellipsoiden der thermischen Schwingung (50% Aufenthaltswahrscheinlichkeit). (H-Atome weggelassen). Die Numerierung der H-Atome folgt dem Schema: Phenylgruppe: H(2) bis H(6) an C(2) bis C(6); Methylgruppen: H(71) bis H(73) an C(7), H(81) bis H(83) an C(8), usw.

Experimentelles

Zur Darstellung der Titelverbindung tropft man unter Rühren eine Lösung von 2,74 g (0,01 mol) Bis(N,N-dimethylhydrazido)thiophosphorsäure-O-phenylester in 100 ml thf zu einer Lösung von 3,48 g (0,01 mol) Hexachlorcyclotriphosphazen und 2,76 ml (0,02 mol) Triethylamin in 300 ml THF. Nach ein bis zwei Wochen Rühren bei Rautemperatur wird das ausgefallene Triethylaminhydrochlorid abfiltriert und das Lösungsmittel am Vakumm entfernt. Durch Umkristallisieren aus n-Hexan erhält man für die Röntgenstrukturanalyse geeignete Einkristalle.

Kristalldaten

$C_{10}H_{17}Cl_4N_7OP_4S$	Mo $K\alpha$ Strahlung
$M_r = 549,06$	$\lambda = 0,71069 \text{ Å}$

672

C10H17Cl4N7OP4S

	Gitterparameter aus 122	C(7) = -0.068(1)	0,5508 (7	() 0,1696 (8)	0,118 (9)
P1	Reflexen	C(8) = 0,1/2(1) C(9) = 0.042(1)	0,7319(0	0,0738(0)	0,102 (6)
a = 7,906 (9) Å	$\theta = 5 - 10^{\circ}$	C(10) = 0.4450(9)	0,7405 (0	0,4465(6)	0,093 (0)
b = 12,076 (8) Å	$\mu = 0.89 \text{ mm}^{-1}$	0,4450 ())	0,7505 (0	5) 0,4405 (0)	0,071 (0)
c = 12.35 (1) Å	T = 293 K				
$a = 0.288 (5)^{\circ}$	I – 200 K Deisensenförmig				
a = 32,00 (3)	Prismemorning	Taballa 7 Augaa		atricaha Daramat	am (Å 0)
$\beta = 100,55$ (8)	$0.35 \times 0.3 \times 0.22$ mm	Tabelle 2. Ausge	wanne geom	ientische Furumen	$er(\mathbf{A}, \mathbf{C})$
$\gamma = 90,78(8)^{\circ}$	Farblos	P(1)S	1,890 (3)	P(2)—N(2)	1,642 (5)
V = 1157 (3) A ³		P(1)—O	1,618 (5)	P(2) - N(3)	1,630 (5)
Z = 2		P(1) - N(1)	1,652 (5)	P(2) = N(5)	1,605 (5)
$D_r = 1.575$ (4) Mg m ⁻³		P(1) = N(4)	1,653(5)	P(2) = N(7)	1,558 (5)
		P(3) - Cl(31)	1,984 (3)	P(4) - C(41)	1,992 (4)
		P(3) - CI(32) P(3) - N(5)	1,990 (4)	P(4) - C(42)	1,970 (3)
Datansammlung		P(3) = N(3) P(3) = N(6)	1,509 (5)	P(4) = N(0) P(4) = N(7)	1,566 (0)
Dutensummung		N(1) = N(2)	1,330 (0)	N(3) = N(4)	1 412 (7)
Automatisches Stoe-	$\theta_{\rm max} = 27^{\circ}$	Ω_{1}	1,420(7)	11(3) 11(4)	1,412 (7)
Vierkreis Diffraktometer	$h = 0 \rightarrow 10$	0 0(1)	1,120(7)		
(.) Abtastung	$k = -15 \rightarrow 15$	C-N (Mittelwert)	1,45 (2);	Bereich: 1,423 (9) bis 1,4	48 (1)
Absorptionskorrektur	$l = -15 \rightarrow 15$	Phenylring: C-C (Mitte	lwert) 1,355 (6)		
Norfair arma ouf AE	$i = -15 \rightarrow 15$				
	5 Konuomeneze	P(1) - N(1) - N(2)	115,6 (4)	P(2)—N(3)—N(4)	113,9 (4)
5371 gemessene Reflexe	gemessen nach je 100	P(1) - N(1) - C(7)	127,8 (5)	P(2) - N(3) - C(9)	126,5 (4)
4994 unabhängige Reflexe	Reflexen	C(7) - N(1) - N(2)	115,3 (5)	C(9) - N(3) - N(4)	116,8 (5)
2539 beobachtete Reflexe	Intensitätsschwankung:	Winkelsumme um N(1)	358,7 (8)	Winkelsumme um N(3)	357,2 (8)
$[l > 3\sigma(l)]$	-3%	P(2) = N(2) = N(1)	115.2 (4)	P(1) = N(4) = N(3)	114 2 (4)
$R_{\rm int} = 0.128$		P(2) - N(2) - C(8)	126.4 (4)	P(1) - N(4) - C(10)	128.3 (4)
 <i>,</i>		C(8) - N(2) - N(1)	117,4 (5)	C(10) - N(4) - N(3)	117,0 (5)
		Winkelsumme um N(2)	359,0 (8)	Winkelsumme um N(4)	359,5 (8)
Verfeinerung					
	A	S—P(1)—O	114,6 (2)	P(1)-O-C(1)	120,0 (4)
Verfeinerung auf F	$\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm A}^{-3}$	N(1) - P(1) - O	108,1 (3)	N(4) - P(1) - O	96,4 (2)
R = 0,069	$\Delta \rho_{\rm min} = -0.71 \ {\rm e} \ {\rm \AA}^{-3}$	N(1) - P(1) - S	113,6 (2)	N(4) - P(1) - S	121,6 (2)
wR = 0.061	Extinktionskorrektur: isotrop	N(1) - P(1) - N(4) N(2) - P(2) - N(5)	100,3 (3)	N(2) - P(2) - N(3) N(2) - P(2) - N(7)	101,5 (2)
S = 2.57	Extinktionskoeffizient ¹	N(2) - P(2) - N(3) N(3) - P(2) - N(5)	105 7 (3)	N(2) = P(2) = N(7) N(3) = P(2) = N(7)	105,5 (5)
37/1 Deflexe	1.0.(2)	N(5) = P(2) = N(7)	103,7(3)	N(5) = P(3) = N(6)	119.8 (3)
240 Decomposition	1,7 (2) A tem form faktoren eue	N(6) - P(4) - N(7)	117.0 (3)	P(2) - N(5) - P(3)	121.8 (3)
249 Parameter	Atomiormiaktoren aus	P(3)—N(6)—P(4)	120,9 (3)	P(4)—N(7)—P(2)	125,3 (3)
Einneitgewichtung benutzt	Cromer & Mann (1968);	•••••			
$(\Delta/\sigma)_{\rm max} = 0.23$	Stewart, Davidson &	Mittelwert der Bindungs	winkel im Triphos	sphazen-Ring: 120 (3)	
	Simpson (1965)	Bereich: 114,5 (3) bis	125,3 (3)		

Tabelle 1. Atomkoordinaten und isotrope äquivalente Verschiebungsparameter (Å²)

$U_{\mathrm{äq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}.$				
	x	y	z	U _{äq}
P(1)	0,2457 (2)	0,5756 (1)	0,3124 (1)	0,061(1)
P(2)	0,0693 (2)	0,8180(1)	0,2629 (1)	0,060(1)
P(3)	-0,2065 (2)	0,9593 (1)	0,2501 (2)	0,068(1)
P(4)	0,1045 (2)	1,0397 (1)	0,2238 (2)	0,063 (1)
S	0,1916 (3)	0,4486 (2)	0,3841 (2)	0,097 (2)
CI(31)	-0,4219 (2)	0,9507 (2)	0,1383 (2)	0,111 (2)
Cl(32)	-0,2993 (3)	1,0030 (3)	0,3855 (2)	0,120 (2)
C1(41)	0,1588 (3)	1,0960 (2)	0,0849 (2)	0,112 (2)
Cl(42)	0,2414 (3)	1,1464 (2)	0,3331 (2)	0,119 (2)
0	0,4242 (5)	0,5691 (3)	0,2662 (3)	0,070 (3)
N(1)	0,0920(6)	0,6088 (4)	0,2104 (4)	0,062 (3)
N(2)	0,1035 (6)	0,7186 (4)	0,1743 (4)	0,066 (3)
N(3)	0,1402 (6)	0,7631 (4)	0,3801 (4)	0,065 (3)
N(4)	0,2866 (6)	0,6977 (4)	0,3796 (4)	0,063 (3)
N(5)	-0,1309 (6)	0,8401 (4)	0,2612 (4)	0,066 (4)
N(6)	-0,0945 (6)	1,0551 (4)	0,2242 (5)	0,079 (5)
N(7)	0,1744 (6)	0,9206 (4)	0,2378 (4)	0,066 (4)
C(1)	0,4746 (8)	0,4670 (5)	0,2210 (6)	0,065 (5)
C(2)	0,403 (1)	0,4308 (6)	0,1166 (7)	0,094 (6)
C(3)	0,461 (2)	0,3361 (9)	0,073 (1)	0,114 (10)
C(4)	0,583 (1)	0,2768 (6)	0,1333 (8)	0,098 (7)
C(5)	0,659 (1)	0,3147 (6)	0,2359 (8)	0,096 (7)
C(6)	0,6036 (9)	0,4121 (6)	0,2825 (6)	0,081 (5)

ittelwert	der	Bindungs	winkel im	Triphosphazen-Ring	;: 120 (3
Bereich:	114	4,5 (3) bis	125,3 (3)		

Endocyclische Torsionwinkel im Di(phosphadiazan)-Ring:					
P(1) - N(1) - N(2) - P(2)	-68,5 (5)	P(2) - N(3) - N(4) - P(1)	-74,7 (5)		
N(1)—N(2)—P(2)—N(3)	31,0 (4)	N(2) - P(2) - N(3) - N(4)	36,7 (4)		
N(2)-N(1)-P(1)-N(4)	31,7 (5)	N(1) - P(1) - N(4) - N(3)	36,0 (5)		

Exocyclische Torsionwinkel um die N-N-Bindungen:

C(7)-N(1)-N(2)-C(8) -91,6 (7) C(9)-N(3)-N(4)-C(10) -85,6 (7)

Die Strucktur wurde mit direkten Methoden gelöst (Programm MULTAN; Main, Lessinger, Woolfson, Germain & Declercq, 1977). Alle anderen Rechnungen wurden mit dem Programmsystem Xtal2,6 (Hall & Stewart, 1989) durchgeführt. Die gegen Ende versuchte Verfeinerung der H-Atomlagen mit isotropen Temperaturfaktoren führte zwar zu einer Verbesserung der R-Werte, ergab aber keine sinnvollen Atomlagen [Ausnahme H(3)]. Die übrigen H-Atome wurden deshalb unter Annahme einer jeweils gestaffelten Anordnung der Methylgruppen geometrisch gesetzt. Den betreffenden H-Atomen wurden die isotropen Temperaturfaktoren der an sie gebundenen C-Atome zugewiesen. Da eine Gewichtung mit $w = 1/\sigma(F_o)$ zu einer deutlichen Verschlechterung des R-Wertes führte, wurde auf eine Gewichtung der Intensitätsdaten verzichtet. $(\Delta/\sigma)_{max}$ [0,23 y von H(3)].

Wir danken Herrn Kollegen D. Lentz für die Hilfe bei den Messungen. Dem Fonds der Chemischen Industrie gilt unser Dank für finanzielle Unterstützung.

Die Liste der Strukturfaktoren, anisotropen Verschiebungsparameter, H-Atom Koordinaten und vollständigen geometrischen Daten sind bei der IUCr (Aktenzeichen: SH1086) hinterlegt. Kopien sind erhältlich durch: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Literatur

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324. Diefenbach, U. & Engelhardt, U. (1992). Phosphorus, Sulfur and Sili-
- con, 65, 107–109.
- Engelhardt, U., Bünger, T. & Viertel, H. (1984). J. Crystallogr. Spectrosc. Res. 14, 603-615.
- Engelhardt, U., Diefenbach, U. & Damerius, R. (1990). Z. Naturforsch. Teil B, 45, 457-460.
- Engelhardt, U. & Simon, A. (1992). Acta Cryst. C48, 492-495, 495-498.
- Engelhardt, U. & Simon, A. (1993). Z. Anorg. Allg. Chem. 619, 1177-1182.
- Engelhardt, U. & Viertel, H. (1982). Acta Cryst. B38, 1972-1975, 3049-3052.
- Hall, S. R. & Stewart, J. M. (1989). Herausgeber. Xtal2.6 User's Manual. Univ. Western Australia, Australien und Maryland, VStA.
- Main, P., Lessinger, L., Woolfson, M. M., Germain, G. & Declercq, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. York, England, und Louvain, Belgien.
- Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1995). C51, 673-674

4-(4-Methoxybenzoyl)-3-(2-methylallyl)tetrahydropyran-2-one

M. NIERLICH, M. LANCE, P. THUÉRY AND J. D. VIGNER

CEA, SCM, CE Saclay, Bâtiment 125, 91191 Gif-sur-Yvette CEDEX, France

M. C. ROUX AND L. WARTSKI

Laboratoire des Carbocycles, CNRS-URA 478, Bâtiment 420, Institut de Chimie Moléculaire d'Orsay, Université de Paris-Sud, 91405 Orsay CEDEX, France

(Received 21 January 1994; accepted 6 June 1994)

Abstract

The X-ray analysis of the title compound, $C_{17}H_{20}O_4$, allows the assignment of the *trans* (synclinal) relationship between the C(3) and C(4) substituents of the lactone ring. Moreover, it indicates that the heterocyclic ring assumes a boat conformation and

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved elucidates the conformations of the aroyl and allylic groups.

Comment

The present work forms part of a study of the structure and reactivity of 3,4-disubstituted tetrahydropyranones (Roux *et al.*, 1993; Roux, Wartski, Nierlich, Vigner & Lance, 1994). Since the ¹H NMR data did not give unambiguous information about the conformation of the lactone ring and its aroyl and allylic substituents, the structure of the title compound has been obtained from single-crystal X-ray analysis. An *ORTEPII* (Johnson, 1976) drawing of the molecule is shown in Fig. 1.

The lactone ring adopts a boat conformation: O(1), C(2), C(4) and C(5) lie in a plane to within ± 0.1 Å, while C(3) and C(6) are at a distance of -0.514 (4) and -0.676 (5) Å, respectively, from this mean plane. The C(7)—C(3) and C(4)—C(11) bonds are synclinally (Klyne & Prelog, 1960) oriented $[C(7)-C(3)-C(4)-C(11) = 84.0 (4)^{\circ}]$. The relative configuration of C(3) and C(4) is $3R^*, 4S^*$. The aroyl group conformation is denoted by the C(5)— C(4)—C(11)—O(3) and C(4)—C(11)—C(12)—C(17)torsion angles of -80.1 (4) and 26.1 (5)°, respectively; the dihedral angle between the plane of the phenyl ring and the C(4)—C(11)—C(12) plane bearing the carbonyl group is $26.4(5)^\circ$. The orientation of the allylic group is denoted by the C(3)—C(7)– C(8)-C(9) and C(3)-C(7)-C(8)-C(10) torsion angles of 116.0 (5) and -67.0 (5)°, respectively.

Fig. 1. ORTEPII (Johnson, 1976) drawing of the title compound with the atom-labelling scheme. H atoms are depicted as spheres of arbitrary radii. Displacement ellipsoids are shown at the 40% probability level.

Acta Crystallographica Section C ISSN 0108-2701 ©1995